Pixata Custom Controls
For Lightswitch

Recent Posts

Popular tags (# posts in brackets)

Anonymous types (3) ASP.NET (5) C# (3) C# tricks and tips (2) Computers (6) Design patterns (3) DomainDataSource (3) Dynamic data (4) Entity framework (3) Entity model framework (5) F# (3) LightSwitch (12) Linq (6) Microsoft (2) MVP (2) MVVM (2) Project Euler (2) RIA services (5) Silverlight (2) SQL Server (4) Unit testing (4) Visual Studio (7) WCF (3) WPF (3)

Gratuitous link to StackExchange




The opinions expressed herein are my own personal opinions and do not represent my employer's view in any way.

Actually, as I'm self-employed, I guess that means that any views I expressed here aren't my own. That's confusing!


Theme modified from one by Tom Watts
C#/F# code styling by Manoli (for posts pre-2016) and Google code prettify (for post from Jan 2016 and beyond)

My rambling thoughts on exploring the .NET framework and related technologies

As my regular reader will doubtless remember, I recently blogged about the important lesson I learnt while solving problem 8. I prophetically commented there…

"So, am I going to contemplate my problem domain before diving in and coding next time? Probably not, but at least if I don’t, I might have some idea where to look when the bug reports come in!"

Hmm, I thought I was joking! Well, sadly I wasn’t.

Faced with problem 14, I jumped right in and began coding as usual. My first attempt looked like this…

let collatz n =
  Seq.unfold (fun i -> if i % 2 = 0 then Some(i, i / 2) else Some(i, 3 * i + 1)) n
let collatzLength n =
  (collatz n |> Seq.takeWhile (fun n -> n <> 1) |> Seq.length) + 1

I had tested this on a smaller range, and it worked fine. Remembering what I thought I had learnt from problem 8, I did a quick scan of the range of numbers generated, and satisfied that an int would cope with it, set off to solve the problem…

[1..1000000] |> Seq.map (fun n -> n, collatzLength n) |> Seq.maxBy snd

Whereas this had only taken a second or two on small ranges, it churned away for a very long time when given the full range, ie up to one million. Although a million is quite a lot, it shouldn’t have taken that long to solve.

I tried the problem in C#, and had the same issue…

  int maxColl = 0;
  int maxLen = 0;
  for (int i = 2; i < 1000000; i++) {
    int coll = i;
    int len = 1;
    while (coll != 1) {
      if (coll % 2 == 0) {
        coll = coll / 2;
      } else {
        coll = 3 * coll + 1;
    if (len > maxLen) {
      maxLen = len;
      maxColl = i;

Somewhat frustrated and baffled, I gave up and started searching around for other people’s code. I came across a C# solution that looked remarkably like the one above, that ran in about 2.4s. This was even more frustrating.

Eventually, it was pointed out to me that when you run it with the full range of starting points, some of the intermediate numbers generated in the sequence grow larger than the limits of an int, which causes the number to overflow. Under normal circumstances, this doesn’t cause an exception, but means that the number goes negative. Once that happens, the Collatz sequence will never go positive again, so will never terminate (assuming we consider the value 1 as the end of the sequence). This was easily confirmed by adding a “checked” block around the C# code, and seeing the exception thrown. Changing the “int” to “long” in the code above allowed it to give the correct answer in about 2.3s.

So what should I have learnt?

Well, I should have taken more care over my number ranges, just like in problem 8. The sad thing is that I thought I had, but I obviously didn’t check carefully enough.

Thinking about it, when the code took so long, I should have put some logging in there to show where it was up to. That would have shown the problem immediately, as I would have seen the negative values in the sequence. Strike One.

The other point is that it raises the issue of validating your input. If my function had done this, I would have found the problem very quickly. For example, changing my collatz function as follows would have raised the issue as soon as I tried to run it…

let collatz n =
  Seq.unfold (fun i -> 
    if i <= 0 then failwith "The input must be at least 1"
    if i % 2 = 0 then Some(i, i / 2) else Some(i, 3 * i + 1)) n

This sort of issue comes up more often than you might think. As developers, we (and I use the plural deliberately, I’ve seen plenty of others make the same mistakes) bravely assume that the values sent into our functions/methods are within acceptable ranges. When they aren’t, we get exceptions that are often very hard to debug.

Microsoft began to address this issue with Code Contracts. In theory, these are an excellent and easy way to address exactly this problem. In practice, I never found them to work, and gave up. Maybe it’s time to revisit them and try again.

Another day, another lesson ignored!

C# | F# | Project Euler
Thursday, 11 February 2016 17:00:00 (GMT Standard Time, UTC+00:00)

The problem

As I briefly mentioned in my rant about the F# fanboy lies, I have been using Project Euler to help me learn F#. I have got as far as problem 8, which was to find the largest product in a series of digits. To save you the bother of clicking the link, here is the description…

The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.


Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?

Apart from the fact that this was an interesting problem, I learnt a very important lesson from this one, and thought it worth sharing.

Solving the problem - or not!

My initial stab at this looked like this…

   1:  let chop n (s : string) =
   2:    [ for i in [0..(s.Length - n)] do yield s.[i..(i + n - 1)]]
   3:  let product (s : string) =
   4:    s |> Seq.fold (fun p c -> p * (int (string c))) 1
   5:  let lgstProduct n (s : string) =
   6:    s |> chop n |> Seq.map product |> Seq.max

The chop function chops the string into chunks of length n, the product function calculates the product of the digits (assuming that the string passed in only contains numbers of course), and the lgstProduct function sticks these together to find the maximum product.

I tried this with the 1000 digit number passed as a string, and using 4 for the chunk size, and it produced the right answer, 5832. Wanting to make the code shorter and neater, I included the two helper functions in the main one, and managed to come up with this...

   1:  let largestProductInt64 (n : int64) (s : string) =
   2:    [ for i in [0L..((int64 s.Length) - n)] do yield s.[(int i)..int(i + n - 1L)]]
   3:    |> Seq.map (fun s -> s, s |> Seq.fold (fun p c -> p * (int64 (int (string c)))) 1L)
   4:    |> Seq.maxBy snd

Note that I changed the code to give me a tuple, containing both the highest product, and the n-character chunk that produced it. Chuffed to bits, I threw the number 13 at it, and got the answer ("9781797784617", 2091059712) , which I duly plugged into the answer box on the Project Euler site, only to be told that it was wrong! What a chutzpah! Of course it’s right, my code works!

Or does it?

So what went wrong?

Having spent quite a bit of time testing my code, and convincing myself that it was right, I resorted to searching for other people’s answers to the same problem. Along the way, I came across someone who had had exactly the same problem as me, albeit in C++, and had come up with the same (wrong) answer.

It turns out that the issue was simple. When multiplying 13 digits together, you could potentially end up with 9^13, ie 2,541,865,828,329. Given that the maximum number that can be stored in the .NET int type is 2,147,483,647 the problem becomes apparent.

I changed my code to use int64, which is the F# equivalent of the .NET “long” type, and can hold numbers up to 9,223,372,036,854,775,807. Lo and behold, project Euler acquiesced, and accepted my answer.

In order to make my code even more general, I actually changed it to use bigint, which can hold any size of integer, but the point I want to take away from this remains the same…

What I learnt in school today

I think there is a very important lesson here. Like many of us, I piled in and started coding without really thinking about the problem. What I should have done is take a look at the problem domain, and think it through. It should have been obvious that the eventual product was going to be too large to fit into a 32-bit integer, which is probably why the Project Euler people chose such a large number in the first place. Had I done that, I would probably have got the right answer first time.

Now, I don’t know about you, but I almost never get these sorts of interesting problems in my day job. I usually get “Pull the data from the database, display it on a window, wait for the user to make changes and then save it,” which is significantly less interesting. However, I think the basic point remains valid. Without thinking through the scope of the problem, and the bounds of the domain, it’s very easy to pile and and get coding, whilst introducing all sorts of subtle bugs. My tests worked absolutely fine, simply because I was testing on small numbers. How many times do we developers test our code against a Noddy database, mainly to save development time? No need to put your hands up, we’re all guilty.

Had my largest product function been production code, I would have released a bug that would only have been spotted some time down the line. Depending on how easy/hard it would be to predict the right numbers, it’s possible that it might not have been spotted for a long time. People would just assume that the number produced was correct.

So, am I going to contemplate my problem domain before diving in and coding next time? Probably not, but at least if I don’t, I might have some idea where to look when the bug reports come in!

Improving the code

Having sorted all that out, I asked for a code review, and came across a really useful F# function that I hadn’t seen before. My chop function, included as the first line of my slimline largestProduct function split the input string into a sequence of chunks of length n. It turns out that F# has the Seq.windowed function that does exactly the same thing, but is more readable.

I also got a slightly better understanding of function composition, and saw how to reduce the number of brackets needed to convert the character to a bigint. I ended up with…

   1:  let largestProduct n (s : string) =
   2:    Seq.windowed n s
   3:    |> Seq.map (fun s -> s, s |> Seq.fold (fun p c -> p * (string >> bigint.Parse) c) 1I)
   4:    |> Seq.maxBy snd

I was quite pleased with this. A lot of functionality in four lines.

Solving the problem in C#

I was interested to see if I could solve the problem in C# as well, so I fired up LinqPad and jumped in. My initial version (including the extra bits need to run it in LinqPad, and the line to write out the result) looked like this…

   1:  void Main() {
   2:    string s = "7316...3450"; // NOTE: Snipped for brevity!!
   3:    int n = 13;
   5:    var maxProduct = MaxProduct(s, n);
   6:    Console.WriteLine ("1) Max product is " + maxProduct.Item2 + " from " + maxProduct.Item1);
   7:  }
   9:  public Tuple<string, long> MaxProduct(string s, int n) {
  10:    return Chop (s, n)
  11:      .Select (s1 => new Tuple<string, long> (s1, Product (s1)))
  12:      .OrderByDescending (t => t.Item2)
  13:      .First();
  14:  }
  16:  public long Product (string s) {
  17:    long res = 1;
  18:    for (int i = 0; i < s.Length; i++) {
  19:      res *= Convert.ToInt32 (s [i].ToString());
  20:    }
  21:    return res;
  22:  }
  24:  public IEnumerable<string> Chop (string s, int n) {
  25:    for (int i = 0; i < s.Length - n + 1; i++) {
  26:      yield return s.Substring (i, n);
  27:    }
  28:  }

Hmm, quite a lot of code there. Looks like F# really is shorter and cleaner!

There must be a way to improve this. A few moments’ thought made me realise that the Product() method is really doing what the Linq Aggregate() extension method does. Also, the Chop() method could easily be done with Linq if I fed in a range of numbers for the starting positions of the substring (like I did in my original F# code).

After a short bit of fiddling, I came up with this rather improved C# version…

   1:  public long MaxProduct (string s, int n) {
   2:    return Enumerable.Range (0, s.Length - n + 1)
   3:        .Select (i => s.Substring (i, n))
   4:        .Max (s1 => s1.ToCharArray().Aggregate (1, (long a, char c) => a * Convert.ToInt64 (c.ToString())));
   5:  }

That's much better! Once you ignore the extraneous bits, the body of the actual method is only three lines, a mere one line longer than the F# version. The F’'# is definitely cleaner, but as I’ve mentioned before, that’s not always an advantage.

After passing this problem around the team, one of the brighter sparks came up with an even shorter version that runs faster…

   1:  public long MaxProductEC (string s, int n) {
   2:    return Enumerable.Range (0, s.Length - n + 1)
   3:      .Max (i => s.Substring (i, n).Aggregate ((long)1, (a, c) => a * (c - '0')));
   4:  }

I defy anyone to tell me that C# is verbose! Don’t get me wrong, I’m really enjoying F#, but the lies are getting on my nerves!

All in all, an interesting exercise.

C# | F# | Project Euler
Monday, 01 February 2016 02:53:00 (GMT Standard Time, UTC+00:00)
# Monday, 25 January 2016

As my regular reader will know, I love anything shiny and new, and so was intrigued when I came across F#. When I was an undergraduate (some 25 years ago, ulp!), I played around with Prolog, and enjoyed the different approach to programming it offered.

However, as my time in front of the computer is at a premium, my F# learning started off with reading books and blog posts late away from the computer, usually last thing at night, and not actually doing any coding. Like most C# developers who come across F#, my initial reaction (other than “Hey, that’s shiny and new, I want to learn it!”) was “Why?” If you search around for terms like “why f#” and “c# vs f#” you’ll find that this is a very common question.

The problem is that the answers aren’t very good. Well, let’s be blunt, there are a lot of lies out there. Now before anyone starts flaming me in the comments (not that anyone ever reads this blog, much less leaves comments), I should point out that the criticisms that I can feel coming are not aimed at the F# community in general, nor are they aimed at F# itself. It’s the way people try to sell it that annoys me. I’ve been brooding over them for months, and have written this blog post in my head many times. I feel less strongly about it than I used to, so this will probably be a watered-down version of the original rant.

Wild exaggerations

As an example, I recently came across the following quote in an F# book… “No other .NET language is as easy to use and as flexible as F#!” (the exclamation mark was part of the quote, not my addition). Now this sort of comment really annoys me. Firstly, it’s completely unsubstantiated, and secondly, it’s totally subjective. Any language is easy to use and flexible if you learn it well enough. OK, maybe not any, Lisp is clearly only for weirdos (like my brother who loves it!), but let’s not go down that route. F# is not inherently easier than any other languages, and in some ways is quite a bit harder to learn, as it involves a significant shift in thinking to do it properly. Comments like that make me feel they are trying to cover something up, and have a negative effect – apart from the obvious feelings of antipathy towards the author.

Another idiocy was included a popular book by very well-respected member of the F# community, who attempted to sell F# by showing some pseudo-C# code, claiming that you can’t do this in C#, but you can in F#. Hey, isn’t F# great? My immediate reaction was to shout at the book “You can do that in C# if you bother to write it properly!” He had deliberately lied about what you can do in C# to try and show how F# is so much better. Given that the book was aimed at C# developers who wanted to learn F#, I thought this was a pretty dumb thing to do. A lot of the book went like this, and I shouted at it a lot!

The blogs weren’t any better. I read no end of them, telling me all the reasons why F# was better, and remained unconvinced. This was partly because some of the reasons given were simply not F# at all. For example, one of the most common reasons given for why we should all be using F# is F# Interactive. The point they all ignored is that FSI is not F#, it’s a tool that Microsoft happened to have implemented for F#, and hadn’t implemented for C#. As it happens, Visual Studio 2015 now includes a C# Interactive window, so this supposed benefit is no longer valid anyway. I doubt they’ll stop their bleating though.

Type inference

Another reason given for F# being the best thing since sliced bread is the type inference. Well, despite having struggled to understand the benefits, I’m still very doubtful about this one. Yes it makes the code shorter, but it makes it a whole lot harder to read. When I look at a piece of C#, I can see straight way the variable types and the method return types, so I can concentrate my mind on hat the code is doing. I can’t do that in F#. Having said that, when writing F#, the type inference is a joy, as you can concentrate on what the code is doing, and ignore the technicalities. It’s a two-edged sword, and not an undiluted benefit.

Well, it's so clean, sir!

The final claim I want to address is that F# code is so much cleaner than C#. Well, there is something in that, but clean isn’t necessarily better. I suspect most people will recognise the following snippet from what is arguably one of the funniest moments in comedy...

Customer (John Cleese): It's not much of a cheese shop, is it?
Owner (Michael Palin): Finest in the district sir!
C: (annoyed) Explain the logic underlying that conclusion, please.
O: Well, it's so clean, sir!
C: It's certainly uncontaminated by cheese.

Being clean can also be a disadvantage.

Apart from the specification of types (see above for why I’m not convinced that this is a bad thing), the only other part of C# that’s not clean is the fact that you have brackets knocking around, whereas F# is totally devoid of them. Again, this might make the code slightly shorter, but has its disadvantages. For example, if I have a few lines of C# code, and want to surround them with an “if” statement, I can just add the “if” statement on the line before the block, and a closing brace on the line after, then reformat the code, and all the indenting is done for me. I know the insertion will be right, as it can’t fail. If I want to do the same in F#, I have to concentrate a lot harder on adding the right amount of extra indentation to the lines I want inside the “if” block. It’s significantly more likely to go wrong.

If the few extra lines added by braces really bother you that much, go buy a bigger monitor! I can see around 70 lines of code on mine, so the few extra lines added by the braces rarely cause me any problems.

To make it even worse, when comparing evil C# code against the pure and sainted F# equivalent, they somehow always manage to stick as much extra code into the C# version as they can. F# snippets would be a method, and nothing else. The equivalent C# snippet would be a whole class, including usings. This is a false comparison.

I |> Red heart F#

By this point, you probably think I hate F#. Well, it’s not true. My point here is not anything against F#, it’s against the lies and exaggerations bandied around by the F# fan boys. I probably would have given up on F# in annoyance at these lies (as I suspect many, many others have done) were it not for the fact that I am fascinated my shiny new things. I decided to carry on anyway.

Thankfully, I discovered Project Euler. For those who haven’t discovered this wonderful site yet, it’s an ever-growing collection of mathematical and computer programming problems. Apart from my inherent love of such things, this was the perfect opportunity to learn F#.

Now you can use PE by simply solving the problems, entering your answer to check you got it right, and carrying on to the next one. I decided not to do that. I solved the problem, then went back and tried to find ways of improving my code. I posted my samples up for code review, and played around with the suggestions I got. I searched around for other people’s solutions (only after I had already solved it myself) to see if I could find better code. When I did, I copied it, played with it and made sure I understood it.

In time (not much actually), an amazing thing happened. I got really excited about F#! When you get into it, it’s a really nice language to use. I’m still not convinced that there are many major benefits over C# for my line of business (pull data from a database, display it on a window, wait for the user to make changes, save the data back to the database, etc), but for the sort of work that I would love to do, like machine learning, data analysis and so on, it seems wonderful. Sadly, I reckon my use of it will be largely recreational, unless I can find some justification for using it in my day job.

If I get around to it, I’ll post some of my Project Euler code here, so others can laugh at it, and feel better about their own code.

Monday, 25 January 2016 20:00:00 (GMT Standard Time, UTC+00:00)